1 pF Off Capacitance, 1 pC Charge Injection, $\pm 15 \mathrm{~V} / 12 \mathrm{~V}$ iCMOSTM Quad SPST Switches

FEATURES

2 pF off capacitance
1 pC charge injection
33 V supply range
150Ω on resistance
Fully specified at $+\mathbf{1 2} \mathrm{V}, \pm 15 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead LFCSP packages
Typical power consumption: <0.03 $\boldsymbol{\mu W}$

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1211/ADG1212/ADG1213 are monolithic CMOS devices containing four independently selectable switches designed on an i CMOS process. i CMOS (industrial-CMOS) is a modular manufacturing process combining high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 30 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

i CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

The ADG1211/ADG1212/ADG1213 contain four independent single-pole/single-throw (SPST) switches. The ADG1211 and ADG1212 differ only in that the digital control logic is inverted. The ADG1211 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1212. The ADG1213 has two switches with digital control logic similar to that of the ADG1211; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1213 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. 2 pF off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. 1 pC charge injection.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

TABLE OF CONTENTS

Specifications.\qquad
Single Supply

\qquad 3
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7

REVISION HISTORY

11/04—Revision PrE: Preliminary Version
Terminology 8
Typical Performance Characteristics. 9
Test Circuits 12
Outline Dimensions 14
Ordering Guide 14

SPECIFICATIONS

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflation)	120 5 25	160	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 180 \end{aligned}$ 50	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	± 1 ± 1 ± 2	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, Vinı Input Current, $\mathrm{I}_{\mathrm{INL}}$ or I_{NH} Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{IN}}$	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 2.5 \\ & \pm 0.5 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	50 15 15 1 75 85 0.002 700 2 2 4		1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{~V} \mathrm{Vms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \end{aligned}$
POWER REQUIREMENTS Ido IDD Iss	$\begin{aligned} & 0.001 \\ & 0.001 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital Inputs }=5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
Ignd	0.001		5.0	$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}
IGnd	0.001			$\mu \mathrm{A}$ max	
				$\mu \mathrm{A}$ typ	Digital Inputs $=5 \mathrm{~V}$
			5.0	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On -Resistance Flatness (Rflation)	220 1 12	250	0 V to V_{DD}	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$		$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, Inlor linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.001 \\ & 5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.5 \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	50 15 15 5 75 85 100 2 2 4		1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 267 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \end{aligned}$

Preliminary Technical Data
 ADADG1211/ADG1212/ADG1213

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS	0.001		5.0		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
IDD				$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}
				$\mu \mathrm{A}$ max	
IDD	0.001			$\mu \mathrm{A}$ typ	Digital Inputs $=5 \mathrm{~V}$
			5.0	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, θ_{JA} Thermal Impedance	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, θ_{JA} Thermal Impedance	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 s)	$215^{\circ} \mathrm{C}$
Infrared (15 s)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
Table 4. ADG1211/ADG1212 Truth Table

ADG1211 In	ADG1212 In	Switch Condition
0	1	On
1	0	Off

Table 5. ADG1213 Truth Table

Logic	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Preliminary Technical Data

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

ADG1211/ADG1212/ADG1213

Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Function
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. Can be an input or output.
3	1	S1	Source Terminal. Can be an input or output.
4	2	VSS	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. Can be an input or output.
7	5	D4	Drain Terminal. Can be an input or output.
8	6	IN4	Logic Control Input.
0	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. Can be an input or output.
11	9	S3	Source Terminal. Can be an input or output.
12	10	NC	No Connection.
13	11	VDD	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. Can be an input or output.
15	13	D2	Drain Terminal. Can be an input or output.
16	14	IN2	Logic Control Input.

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.
Ron
The ohmic resistance between D and S .
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
I_{s} (Off)
The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{b}}, \mathrm{Cs}$ (On)
The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 23.
toff
The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Dual Supply

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 12. Leakage Currents as a Function of Temperature

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Supply Current vs. Input Switching Frequency

Figure 15. Charge Injection vs. Source Voltage

Figure 16. $T_{\text {ON }} / T_{\text {OFF }}$ Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. On Response vs. Frequency

TEST CIRCUITS

Figure 20. Test Circuit 1—On Resistance

Figure 21. Test Circuit 2—Off Leakage

Figure 22. Test Circuit 3 —On Leakage

Figure 23. Test Circuit 4—Switching Times

Figure 24. Test Circuit 5—Break Before Make Time Delay

Figure 25. Test Circuit 6—Charge Injection

Figure 26. Test Circuit 7—Off Isolation

Figure 28. Test Circuit 9—Bandwidth

Figure 27. Test Circuit 8—Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 29. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1211YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1211YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-16-4
ADG1212YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1212YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	$\mathrm{CP}-16-4$
ADG1213YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1213YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-16-4

Preliminary Technical Data \quad ADADG1211/ADG1212/ADG1213 NOTES

NOTES

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

